Time: 3 hours

Max. Marks: 60

Use of IS: 456 – 2000 and SP 16 (Charts and Tables) are permitted. Use M20 concrete and Fe415 grade steel unless otherwise stated. Missing data if any may suitably be assumed.

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (1X24=24M)_

Q.No.	Questions	Marks	СО	KL
1	Design a two way slab panel for the following data. Size = $7 \text{ m x } 5 \text{ m}$	[24M]	CO3	L6
	Width of supports = 300 mm			
	Edge condition = two short edges discontinuous			
	Live load = 4 kN/m^2			
	Floor finish = 1 kN/m^2			
	Consider M20 grade concrete and Fe 415 grade steel			
	Draw the detailing diagram for the two way slab.			
	(or)			
2	Design a square column for the following data:	[24M]	CO4	L6
	Size of column = $450 \text{ mm} \times 450 \text{ mm}$			
	Unsupported length = 4 m			
	Factored load = 2500 kN			
	Ultimate moment = 200 kNm			
	Take the support condition: Fixed-Fixed			
	Assume arrangement of reinforcement on two sides			
	Use grade concrete as M25 and grade of steel as Fe415			
	Draw the detailing diagram for the longitudinal reinforcement and lateral ties			
	of the column.			

PART-B

Answer any Three Questions in Part-B (3X12=36M)

Q	No.	Questions	Marks	(KL
3	a)	Discuss the concepts of limit state design.	[6M]	CO1	L2
	b)	Explain the following with neat sketches: Under reinforced section Balanced section Over reinforced section	[6M]	CO1	L2
4		A reinforced concrete beam of size 350 mm x 550 mm effective section is reinforced with 4 Nos. of 32 mm diameter bars. Determine the vertical shear reinforcement required to resist a shear force of 450 kN. Use M20 grade of concrete and Fe415 grade steel.	[12M]	CO2	L3

Code N	No: P18CET11					
5	Design a reinforced concrete slab for a roof of a hall 4 m x 10 m is simply supported with 230 mm walls. The slab carries a superimposed load of 4 kN/m^2 in addition to its dead weight. Take floor finish as 1 kN/m^2 . Use grade concrete as M25 and grade of steel as Fe415.	[12M]	CO3	L3		
6	Design an axially loaded tied column 400 mm x 400 mm pinned at both ends with an unsupported length of 3 m to carry a factored load of 2300 kN. Use M30 grade of concrete and Fe415 grade steel.	[12M]	CO4	L3		
7	List out the different types of foundation. Discuss in detail with neat sketches.	[12M]	CO5	L2		
